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To appear in J. Chem. Phys. Solids

Faulting in Sodium Azide

Henry M. Otte
RIAS, Div. of Martin Marietta, Baltimore, Maryland

In a recent paper Keating and Krasne~reported measurements of

X-ray powder pattern diffraction line shapes and positions from sodium

azide (NaN3 ) after various treatments. In particular, they noted that

after deformation, the line broadening was consistent with that expected

from the formation of deformation stacking faults, but that the antici-

pated shifts in the peak positions could not be detected. The purpose

of this coiiunication is to suggest a possible explanation.

Sodium azide is rhombohedral, but the structure may also be described

as hexagonal with ABCABC.....stacking, as in FCC close-packed metals. The

analysis of the diffraction effects due to stacking faults was given by

Keating and Krasner, and is similar to that for FCC structures 2 )  Since

there is a unique slip plane in sodium azide, no correction is needed for

a multiplicity of slip planes and the powder pattern analysis is thus

simpler than for the FCC case.

If only intrinsic (or deformation) stacking faults are formed upon

deformation or irradiation, then the application of the analysis by Keating

and Krasner would be valid. However, if extrinsic (or double-deformation)

faults are also produced, then the expected diffraction effects would have

to be re-examined. Published work to-date indicates that in metals, in-

trinsic faults predominate. However, in other materials, the stacking

fault energy of intrinsic and extrinsic faults may be of about equal mag-

nitude (and possibly even less for the extrinsic faults). Such a situation

appears to prevail in Si ) , where intrinsic and extrinsic faults form in
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about equal amounts when the material is deformed in a suitable manner.

Since sodium azide has a unique slip plane, the mode of deformation

would not be too important in producing both types of faults if their

energies were approximately equal.

The diffraction effects from extrinsic faults in FCC structures

(4)have recently been calculated by Johnson He found that although the

same reflections were shifted and broadened as for intrinsic faulting,

the shift produced by a low density of extrinsic faults was in the

opposite direction to that produced by intrinsic faults. If a' is

the probability of an intrinsic fault and a" is that of an extrinsic

fault, then for small a the peak shift depends upon the difference

a'-a" and the broadening depends upon the sum a'+'?(5). Consequently,

for a'=a", no net peak shift will be observed and the broadening will

be double that from intrinsic faults only.

Thus on the basis of the supposition that (i) extrinsic stacking

faults are at least as likely to form in sodium azide as intrinsic

stacking faults and that (ii) the X-ray diffraction analysis for ex-

trinsic stacking faults is applicable, one can explain qualitatively

the results of Keating and Krasner.

I would like to thank the Office of Naval Research, for financial

support.

RIAS, Div. of Martin Marietta Henry M. Otte
Baltimore, 12
Maryland.
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Measurement of Stacking Fault Probabilities in Bulk Specimens

H. M. Otte,* D. 0. Welch* and G. F. Bolling**

Recently Welch and Otte (1962) pointed out that residual

elastic strains can affect measurements of the stacking fault

probability, a , in face-centered cubic metals. The purpose of

this note is to consider one case in detail, where strains were

not examined, and to draw attention to some precautions which must

be taken in interpreting the measured shifts of X-ray reflections.

In the investigation of zone-refined lead by Bolling et al.

(1961), bulk specimens were examined at 4.2*K and 77*K. The

deformation at temperature was performed by scraping the surface of

the specimens (gouging). Even though the nature and distribution

of any residual lattice strains would be quite complex and certainly

would depend on the exact manner of deformation, it is possible that

a residual strain predominantly of one sign was left in the specimens.

This strain would lead to a shift in the position of each X-ray

reflection depending on the scattering angle and the elastic constants.

Since lead is more anisotropic elastically than the other f.c.c.

metals, it turns out that the effect of residual lattice strains is

relatively most important for lead.

* RIAS, Baltimore, Maryland

" Westinghouse Research Laboratories, Pittsburgh, Pennsylvania
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When residual elastic strain and faulting are both considered,

the following equation should be used to calculate a,

6A2e = K + H a. (1)
p-q p-q p-q

Here, 6A20 represents the change in separation between the p1b andp-q

qtb X-ray reflections; H as defined by Wagner (1957), are coefficientsp-q

relating the change in separation to the faulting probability; and

K are coefficients relating the change to the residual stress, C1
p-q

The constants K are derived simply from the differential form ofp-q

Bragg's law and the definition ep = K PC; i.e.,

K _ 18o 2(K tan e -K tan e0) (2)
p-q p p q q

The moduli K can be calculated frow the elastic constants under ther

two simplified extremes of constant strain or const-ant stress existing

throughout the specimen. Greenough (1952) gives the equations for

the strain chki in the hkL direction and it follows that

K ~ cont. (C 1 1 +4C 1 2-2C 4 4 )

2(C1 1 +2C 1 2) (C1 1 -C1 2 +3C 4 4 ) (3)

(S _S-1S 4 )(h 2k 2+k 2 +12 22 2 2

and Kr [0= const. ] = S12+ 11 12"
12 (h2 +k2 +12)2

where C,, and Sij are the elastic constants and r = h +k +12 . In

most cases, however, the best agreement with observation is not obtained

under these extreme assumptions; better agreement is obtained if the
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actual residual strain distribution is considered to be somewhere

between the limits of isotropic stress and isotropic strain,

(Greenough, 1952; Welch and Otte, 1962). The K for this assumedr

situation is chosen here to be the average of the values of K inr

equation (3).

The stress and the faulting probability can both be derived

from equations (1) if the change in separation between two pairs of

X-ray reflections are measured. For the ;one-refined lead such

changes were measured at 4.20K; the reflections involved were the

111, 200, and 220, lines 3, 4 and 8 respectively (Bolling et alia,

1961). The value of the coefficients to be used for lead examined
0

with CuKa radiation ( A = 1.5418A) are given in Table I.

Calculated values for the stacking fault probability and the

residual stress are given in Table II. The usual assumption of zero

residual strain (K=O), gives values of a very close to those derived

at the assumed extreme of isotropic strain. However, the stress

2values for bothseem unreasonable; 6 =0, or -6 and -8 Kg/mm . At

the other assumed extreme, of isotropic stress, the value of a has

been appreciably diminished and it is also somewhat diminished under

the assumed, mean case. The four values of stress from -2 to -4

Kg/mm2 fall below the stress at the beginning of neckitig observed

in single crystals of lead deformed in tension at 4.2°K, (Bolling et

al., 1962); and because it is not unusual to obtain high values of

stress in compression these values must be considered reasonable. Since

the deformation was by gouging, any residual strain in the direction

of the surface normal would most likely have been predominantly posi-
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tive, reflecting a transverse compressive stress in the deformed

surface. The calculated stresses are therefore of the expected sign.

In the investigation at 4.20K, specimens of aluminum and a

Cu-3OZn alloy were also deformed by gouging. Unfortunately, the

results from neither material can be used to clarify the effects of

residual strain. Aluminum is quite isotropic elastically and there

would have been little effect. The brass on the other hand is aniso-

tropic elastically, but it faults profusely and the changes in line

separation due to the deformation faults would most likely have

masked any effects of residual strain due to the anisotropy.

Other experiments (Welch and Otte, 1962) have shown that residual

elastic strains can make a significant contribution to the peak shifts

in an anisotropic f.c.c. alloy. It can also be concluded here that

the contribution is measurable in lead if the averaging

assumption holds true,and quite significant, if the extreme of isotropic

stress holds true. In the work performed by Bolling et al. (1961)

the 62 04 -3  was primarily relied upon; it is however advisable in

this sort of experiment to examine as many X-ray peaks as possible in

order to take account of the contribution due to residual strains. Fin-

ally the precaution should be added that, even though the use of filinrs

provides an averaging that should eliminate the extreme of isotropic

stress, it is not clear that the effects of residual elastic strain

have been experimentally shown to be negligible.
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TABLE I

Coefficients and Data Used in Equations (1) for Lead at 4.20K

Quantity 438-4 Units

First cold -0.03o(-+0.01) 0.023(+0.02) 0(20)
work 6A 20

Second cold -0.04s(±0.0l) 0.039(+0.02) 0(20)
work 662e

H p- -3.7 4-5** 0(2e))

Kpqosatstrain 0.00053 0.00181 (0m K

K
pqosatstress 0.00930' -0.00445

Kp- Mean Case oo~i--03
pqAverage of above 0041-.03

*The data istae from Boiling et al (1961). A lattice constant
ao = 4.916 A and the elastic constants for lead at 4.20K, given by

Waldorf (1960), were used.
*The value of H8-4 was incorrectly given by Boiling et al (1961) as

7.8, but was not significantly used.



TABLE II

Calculated Values of Stacking Fault Probability and Residual Stress

-First Cold-Work-

Qjuantity Assumptions

f=0 C=constant C=constant mean Case

oao 0.0068 0 -007Q 0.004~o
0.005 o6000

G,Kg/mm2  0 -6 -2 -3

- Second-Cold Work--

0:013 ) 0.1 0.012 0.005 0.007

6,-Kg/mm 2 0 -8 -3 -4


